Total No. of Questions :09] [Total No. of Pages : 02

III/IV B.Tech. DEGREE EXAMINATIONS, NOVEMBER- 2019 First Semester

COMPUTER SCIENCE ENGINEERING LANGUAGES, MACHINES AND COMPUTATION

Time: Three Hours Maximum marks:60

Answer Question No.1 Compulsory 6X2=12 M
Answer ONE Question from each Unit 4X12=48 M

- 1. a) Construct a finite automaton that accepts $\{0,1\}^*$
 - b) What are context sensitive languages?
 - c) What are the differences between DFA and NFA?
 - d) List out the properties of recursive and recursively enumerable language.
 - e) Give examples of an undecidable problem.
 - f) Brief on Universal Turing machine.

UNIT-I

- 2. a) Construct a finite state automata that recognizes all possible strings over the alphabet {0,1} ending with two consecutive zeros.
 - b) Explain closure properties of regular languages.

(OR)

- 3. a) Construct a finite state automata with \in -trasnsition for the regular expression r = 01*+10.
 - b) Construct a finite state automata equivalent to the regular expression.

$$(0+1)*(00+11)(0+1)*$$

UNIT-II

- 4. a) Construct a DFA to accept the language $L=\{w/w \text{ has both an even number of } 0\text{'s and even number of } 1\text{'s}\}$
 - b) Prove that regular sets are closed under union and complementation.

(OR)

5. Discuss about equivalence of NFA and DFA. For the regular expression (0+1)*(00+1), obtain an NFA without \in -moves.

UNIT-III

- 6. a) Consider the CFG with the following production rules: $S \rightarrow aB \mid bA, A \rightarrow bAA \mid aS \mid a, B \rightarrow aBB \mid bS \mid b. \text{ Give the right most derivation and draw derivation tree for the string 'abbaab'}.$
 - b) Prove that the following grammar of arithmetic expression is ambiguous.

$$E \rightarrow E + E \mid E^*E \mid (E) \mid (id)$$

(OR)

7. a) Convert the following grammar to a PDA that accepts the language by empty stack.

$$S -> 0S1 | A,$$
 $A -> 1A0 | S | \in$

b) Using Pumping Lemma of CFL, Prove that the language given below is not context free. $L = \{ a^i b^j c^k | i < j < k \}.$

UNIT-IV

8. Define Turing machine. Design A Turing Machine to recognize the language $\{1^n2^n3^n \mid n>=1\}$

(OR)

9. Give a brief on multi tape Turning machine. Design a Turing Machine which can multiply two positive integers.

Total No. of Questions :09] [Total No. of Pages: 02

III/IV B.Tech. (Supple) DEGREE EXAMINATIONS, JUNE-2019

First Semester

COMPUTER SCIENCE ENGINEERING LANGUAGES, MACHINES AND COMPUTATION

Time: Three Hours Maximum marks:60

> **Answer Question No.1 Compulsory** 6X2=12 M**Answer ONE Question from each Unit** 4X12=48 M

- 1. Define grammar a)
 - Type 2 Production form b)
 - Recursive definition of regular expression c)
 - d) Ambiguous grammar
 - **Deterministic PDA** e)
 - Universal TM f)

UNIT-I

- 2. a) Consider below transition diagram and verify whether the following Strings will be accepted or not? Explain.
 - i) 0011
- ii) 010101
- iii) 111100 iv) 1011101

b) Define NFA and explain with an example.

(OR)

3. Find a Regular expression corresponding to each of the following subsets over $\{0,1\}*$. P.T.O

- a) The set of all strings containing no three consecutive 0's
- b) The set of all strings where the 10th symbol from right end is a 1.
- c) The set of all strings over {0,1} having even number of 0's & odd number of 1's
- d) The set of all strings over {0,1} in which the number of occurences of is divisible by 3.

UNIT-II

- 4. Consider the two regular expressions: R=0*1*, S=01*10*+1*0+(0*1)*
 - a) Find a string corresponding to R but not to S
 - b) Find a string corresponding to S but not to R

(OR)

5. a) Show that the Finite Automata are equivalent:

b) Construct NFA for the following regular expression: (0+1)*(01+110)

UNIT-III

6. a) Convert the following grammar into CNF.

$$S->aAD$$
 $A->aB \mid bAB \quad B->b$ $D->d$

b) What do you mean by Greibach Normal Form (GNF)? When is a CFG said to be in GNF?

(OR)

- 7. a) Find the PDA with only one state that accepts the language $\{a^mb^n|n>m\}$.
 - B) Find the CFG corresponding to PDA whose transition mapping is as follows:

$$\mathsf{u}\left(S,a,\times\right) = \left(s,A\times\right) \quad \mathsf{u}\left(S,b,A\right) = \left(s,AA\right) \quad \mathsf{u}\left(S,a,A\right) = \left(s,^{\wedge}\right)$$

UNIT-IV

- 8. a) What are the types of Turing Machines? Explain.
 - b) Give a Turing machine that computes ones complement of a binary number **(OR)**
- 9. What are NP-complete and NP-hard problems? Explain them with examples.

